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Beta Regression Models
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Beta regression model were introduced for several authors as 


• Paolino, P. (2001). “Maximum likelihood estimation of models with beta-distributed 
dependent variables”. Political Analysis, 9: 325-346.


• Buckley, J. (2002). “Estimation of models with beta-distributed dependent variables: A 
replication and extension of Paolino (2001)”. Political Analysis, 11: 1–12. 

• Kieschnick, R. and McCullough, B. D. (2003). “Regression analysis of variates observed on 
(0,1): percentages, proportions, and fractions.” Statistical Modeling, 3: 193–213. 


• Ferrari, S. and Cribari-Neto, F. (2004). “Beta regression for modelling rates and pro- 
portions.” Journal of Applied Statistics, 31: 799–815. 


• Smithson, M. and Verkuilen, J. (2006). “A Better Lemon Squeezer? Maximum- Likelihood 
Regression With Beta-Distributed Dependent Variables.” Psychological Methods, 11(1): 54–
71.


• Branscum, A. J., Johnson, W. O., and Thurmond, M. C. (2007). “Bayesian Beta regression; 
application to household data and genetic distance between foot-and-mouth disease 
viruses.” Australian & New Zealand Journal of Statistics, 49(3): 287–301. 
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Beta regression models
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Figure 1. Beta densities for different combinations of (µ,�).
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Beta regression models

Beta density:

f (y ;µ,�) =
�(�)

�(µ�)�((1 � µ)�)
yµ��1(1 � y)(1�µ)��1, 0 < y < 1,

where 0 < µ < 1 and � > 0. Note that

E(y) = µ

and
var(y) =

µ(1 � µ)

1 + �
.

Hence, � can be regarded as a precision parameter.

This is not the usual parameterization of the beta law, but is
convenient for modeling purposes.
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Let  be a vector of observed responses that takes 
values in (0,1). The doubly mixed beta regression model is given by:


. 


y = (y1, …, yn)T

yij ∼ Beta(μij, ϕij)
g1(μij) = xijT β + zijTbi, g2(ϕij) = − wT

ijδ − hT
ijdi

bi ∼ Np(0, Σb) and di ∼ Nr(0, Σd)
j = 1,…, ni i = 1,…, n

where is a vector of fixed effect  regression coefficients associated 

with the location parameter and is a vector  of fixed effect

regression coefficients associated with the shape parameter.


The random effects of the location and shape parameters are denoted, respectively, by 

 and 

β = (β1, …, βk)T

δ = (δ1, …, δl)T

bi = (bi1, …, bip)T di = (di1, …, dir)T
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Since the dispersion decreases when the value of  increases, we take the 

negative sign in the linear predictor to ease the interpretation of the coefficients. 


Moreover, , , and 


are covariate vectors, which do not need to be identical and they can be overlapping.

 

Examples of link functions  and  are he logistic and logarithm functions, 

respectively.

It is a consolidated model


Verkuilen J, Smithson M. Mixed and Mixture Regression Models for Continuous Bounded 

Responses Using the Beta Distribution. Journal of Educational and Behavioral Statistics. 
2012;37(1):82-113


ϕ

xij = (xij1, …, xijk)T wij = (wij1, …, wijl)T zij = (zij1, …, zijp)T

hij = (hij1, …, hijr)T

g1( ⋅ ) g2( ⋅ )
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It is a consolidated model. Some additional references 


- Verkuilen J, Smithson M. Mixed and Mixture Regression Models for Continuous Bounded 

Responses Using the Beta Distribution. Journal of Educational and Behavioral Statistics. 
2012;37(1):82-113


- Wang J, Luo S. Bayesian multivariate augmented Beta rectangular regression models for 
patient-reported outcomes and survival data. Statistical Methods in Medical Research. 
2017;26(4):1684-1699


- Haiming Zhou, Xianzheng Huang, Bayesian beta regression for bounded responses with 
unknown supports, Computational Statistics & Data Analysis,Volume 167, 2022



My experience
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1. The beta regression model is not a robust model. It is sensible for 
outliers (Bayes, et al, 2012; Lemonte an Bazán 2016).


• Bayes, C., Bazán, J. L. García, C. (2012). A new robust regression model for 
proportions. Bayesian Analysis. 7(2), 771-796.


(Use of the beta rectangular distribution. Bayesian estimation.)


• Lemonte A.; B ; Bazán, J. L. (2016). New class of Johnson SB distributions 
and its associated regression model for rates and proportions. Biometrical 
Journal (1977), v. 58, p. 727-746.

(Generalizations of the SB-U Johnson distribution based in the normal 
distribution using the class of the symmetrical distributions. ML estimation.)




2. Zero-One Augmented versions of the Beta and Beta rectangular 
model can be interesting models for data with excesses of zeros and/
or ones (Nagarotto, et al, 2019; da Silva, et al, 2020)


• Nogarotto, D. A.; Azevedo, C. L. N. ; Bazán, J. L.(2020). Bayesian 
Estimation, Residual Analysis and Prior Sensitivity Study for Zero-One 
Augmented Beta Regression Models with an Application to Psychometric 
Data. Brazilian Journal of Probability and Statistics. 34(2), 304-322.


( Bayesian estimation using Jeffrey priors)


• Silva, Ana R. S. ; Azevedo, C. L. N. ; Bazán, J. L. ; Nobre, S. J. (2021) 
Augmented-limited regression models with an application to the study of the 
risk perceived using continuous scales, Journal of Applied Statistics, 48:11, 
1998-2021(Bayesian estimation using a reparameterized version of the Beta 
rectangular)




3. Sometimes we want model no only the mean as a location parameter 
but also a quantile of the distribution of the response variable 
(Lemonte and Bazan, 2016; Bayes et al 2019; da Paz et al, 2019, de 
Oliveira et al, 2019). 

• Lemonte A.; B ; Bazán, J. L. (2016). New class of Johnson SB distributions 
and its associated regression model for rates and proportions. Biometrical 
Journal 58, p. 727-746.


(Median regression model using the symmetric SB distributions. ML 
estimation)


• Bayes, C., Andrade, M. C. ; Bazán, J. L. (2017). A quantile parametric mixed 
regression model for bounded response variables. Statistics and its 
Interface, 10, p. 483-493.


(Mixed quantile regression model using the Kumaraswamy distribution. 
Bayesian estimation).



• Da Paz, R. F.; Balakrishnan, J. L. ; Bazán, J. L. (2019). L-Logistic 
Regression Models: Prior sensitivity analysis, robustness to outliers and 
applications. Brazilian Journal of Probability and Statistics , v. 33, p. 455-479.


(Median regression model using the L-Logistic distribution. ML estimation)


• De Oliveira, E. S. B.; de Castro, M.; Bayes, C.; Bazán, J. L. (2021). Bayesian 
parametric quantile models for heavy tailed bounded. Submitted for Journal 
of Applied Statistics. In Revision.

(Mixed quantile regression model using the Gompertz limited distribution. 
Bayesian estimation).




4. Mixture of Beta distributions no solve complex distributions with 
multiples modes (da Paz et al, 2017 ; da Paz et al, 2019).


• Da Paz, R. F.;  Bazán, J. L.; Milan, L. A. (2017). Bayesian estimation for a 
mixture of simplex distributions with an unknown number of components: 
HDI analysis in Brazil. Journal of Applied Statistics, v. 44, p. 1630-1643, 
2017.

(Use of the mixture of Simplex distributions. Bayesian estimation.)


• Da Paz, R. F.;  Bazán, J. L.; Lachos, V. H.; Dey. D (2020). A finite Mixture 
Mixed Proportion Regression Model for Classification Problems in 
Longitudinal Voting data. Submitted for publication in Journal of Applied 
Statistics. In revision.


(Mixed quantile regression models using  mixture of L-Logistic distribution. 
Bayesian estimation.)




5. A extra parameter can give more flexibility to the distribution of the 
response (Cancho et al, 2020, Lemonte and Bazan, 2016; Rodrigues et 
al, 2020).


• Lemonte A.; B ; Bazán, J. L. (2016). New class of Johnson SB distributions and its 
associated regression model for rates and proportions. Biometrical Journal 58, p. 
727-746.


(Median regression model using the symmetric SB distributions. ML estimation) 


• Cancho, V. G.; Bazán, J. L. ; Dey, D. K. (2020). A new class of regression model 
for a bounded response with application in the study of the incidence rate of 
colorectal cancer. Statistical Methods in Medical Research. 29(7), 2015-2033.


(Median regression model using the Bounded Power Normal distribution. Bayesian 
estimation).




• Rodrigues, J. ; Bazán, J. L.; Suzuki, A. K. (2020). A flexible procedure for 
formulating probability distributions on the unit interval with applications. 
Communications in Statistics-Theory and Methods. 49(3), 738- 754.


(Median regression model using the generalized SB distributions. Classical and 
Bayesian estimation).


• Piccirilli, G. P. ; De Bastiani,  F. ; Bazán, J. L.; (2021). Bounded mixed regression 
models of Brazil’s longitudinal mortality rate from bronchial and lung cancer. 
International Statistical Review. Submitted.


(Regression model using distributions SB type. Classical estimation).



3
A FRAMEWORK TO THE 
FORMULATION OF BOUNDED 
DISTRIBUTIONS



The rest of this article is organized as follows. In Section 2, a unified GF-quantile dis-
tribution is developed and some properties are presented. In Section 3, some illustrative
examples of the GF distributions are presented including known and new probability
distributions on the (0, 1) interval. In Section 4, we present two illustrative examples
with real dataset from the likelihood and Bayesian point of view. We end the paper
with some final comments in Section 5.

2. A composite quantile family of the cumulative distribution
functions (cdf)

Let W be a random variable with cdf Gðw; hÞ and probability density function (pdf)
gðw; hÞ on the support RW, where h is an unknown parameter (or vector of parameters).
Let X be another continuous random variable with cdf Fðx;/Þ and quantile function

QF y;/ð Þ ¼ F$ 1 y;/ð Þ; 0 % y % 1 (1)

where RX ¼ RW and / an unknown (known) parameter.

2.1. Definition and properties of GF-quantile distributions

In order to obtain a new flexible class of distributions on the (0, 1) interval, called GF-
quantile distribution, we define the composite probability distribution function

GF y; h;/ð Þ¼: G&QF y; h;/ð Þ ¼ G QF y;/ð Þ; hð Þ ¼
ðQF y;/ð Þ

$1
g w; hð Þdw; y 2 0; 1ð Þ (2)

It can be clearly seen that GFðy; h;/Þ is the cdf of the continuous random variable Y
on the (0, 1) interval with parameters h and /. In fact, we generate by composition of
the baseline distribution Gðw; hÞ with the quantile function QFðy;/Þ; 0 % y % 1. The
composite probability distribution in (2) will be denoted by Y 'GFðh;/Þ.
In a recent paper, Smithson and Shou (2017) introduced a location-scale probability

distribution on the (0, 1) interval by adding the location and scale parameters into the
compound baseline distribution with support RW ¼ RX as

G w; hð Þ ¼ H U w; hð Þ½ ); h ¼ l;rð Þ (3)

where

U w; hð Þ ¼ w$l
r

and H is a standard or kernel probability distribution whose support D1 cannot be equal
to RX. For other U-transformations see Smithson and Shou (2017). To obtain the loca-
tion-scale distribution on the unity interval, we supposed that they considered Fðx;/Þ
with fixed /. However, it is not clear in (1.4) of Smithson and Shou (2017) that the
scale parameter can be involved in the baseline distribution as in the examples consid-
ered in Section 3. It is worth mentioning that our main aim here is to obtain new dis-
tributions on the (0, 1) interval by adding a new parameter / into the parent
distribution Gðw; hÞ through the quantile function of the transformed distribution
Fðx;/Þ. This procedure is more flexible than the one in (3) because we choose the

2 J. RODRIGUES ET AL.



baseline location-scale Gðw; hÞ; h ¼ ðl; rÞ; as the special case of the GF-quantile family.
For more details and some applications of the location and scale GF-quantile family on
the (0, 1) interval, we suggest reading the paper by Smithson and Shou (2017). If y ¼
VðzÞ; z 2 ð$1;1Þ in (2), where V(z) is the probability distribution of the random
variable Z, the GF-quantile distribution can be extended on the ð$1;1Þ interval. This
extended family of distributions is the T-X family of distributions considered by
Aljarrah, Lee and Famoye (2014) with T¼W and X¼Z.
The pdf of the composite quantile family of distributions in (2) can be obtained as

gf y; h;/ð Þ ¼ g QF y;/ð Þ; hð ÞqF y;/ð Þ; y 2 0; 1ð Þ (4)

where qFðy;/Þ is the quantile density function (qdf) of X (Parzen 1979) defined

by qFðy;/Þ ¼ dQFðy;/Þ
dy :

Next, we present some properties of the GF-quantile probability distribution and how
to generate the data. The quantile function of the GF-quantile distribution is given by

QGF y; h;/ð Þ ¼ F G$ 1 y; hð Þ;/
! "

¼ F QG y; hð Þ;/ð Þ ¼
ðQG y;hð Þ

$1
f x;/ð Þdx; y 2 0; 1ð Þ (5)

If a simulation study of the GF-quantile distribution is needed the following proced-
ure motivated by (5) could be useful. First of all, the parameter values h and / must be
fixed and the y-values can be generated following these steps.

1. Generate u values from the (0, 1) uniform distribution,
2. Take w ¼ QGðu; hÞ, where w are generated values of the distribution Gðw; hÞ,
3. Take y ¼ Fðw;/Þ which are the values generated from the GF-distribution.

Now, some properties of the GF-quantile distributions are presented.

% The rth moment of the GF-quantile distributions.

EY Yr½ ' ¼
ð1

0
yrgf y; h;/ð Þdy ¼

ð

RW

Fr w;/ð Þg w; hð Þdw ¼ EW Fr w;/ð Þ½ ' (6)

% Reflected distribution of the GF-quantile distribution. We can show that
Y ( gf ðy; h;/Þ if and only if Z ¼ 1$Y ( gf ð1$ z; h;/Þ. This result implies that
the probability distribution of Z is the reflected distribution of the distribution of
Y with EðZÞ ¼ 1$EðYÞ and VðZÞ ¼ VðYÞ.

2.2. Composite families of GF-quantile distributions

Table 1 shows some GF-quantile distributions on the unit interval under different types
of supports of the baseline and transformed distributions in (2).
Here, RefExp(1) denotes the Reflected Exponential distribution (T(RefExpð1Þ if and

only if $T( exp ð1Þ), RefW(1) denotes the Reflected Weibull distribution
(T(RefWð1;/Þ if and only if $T(Wð1; 1/Þ) and U(a, b) is the Uniform distribution

on the (a,b) interval.
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3. Some illustrative examples of the GF-quantile distributions

In this section, we present some examples to show how to obtain flexible distributions
on the (0, 1) interval given the baseline and transformed distributions.

3.1. Quantile transformation of the baseline Exponential distribution

Let W be an exponential variable with Gðw; hÞ ¼ 1$ e$ hw; gðw; hÞ ¼ he$ hw and the

quantile function QGðu; hÞ ¼ G$ 1ðu; hÞ ¼ $ lnð1$ uÞ
h ; 0< u< 1. Similarly, let X be the

transformed exponential on the support RX ¼ RW and Fðx;/Þ ¼ 1$ e$/x. The quantile

function of X is QFðy;/Þ ¼ F$ 1ðy;/Þ ¼ $ lnð1$ yÞ
/ ; 0 % y % 1.

From (2), the cdf and pdf of the GF-quantile distribution are given by

GF y; h;/ð Þ ¼ G QF y;/ð Þ; hð Þ ¼ 1$ e$ hQF y;/ð Þ ¼ 1$ e hln 1$ yð Þ
/

! "
¼ 1$ 1$ yð Þ

h
/; y 2 0; 1ð Þ

(7)

and

gf y; h;/ð Þ ¼ g QF y;/ð Þ; hð ÞqF y;/ð Þ ¼
he$ hQF y;/ð Þ

/ 1 $ yð Þ
¼ h

/
1$ yð Þ

h
/$ 1; y 2 0; 1ð Þ (8)

respectively. Unfortunately, the probability distribution in (7) is not identifiable and
additional information will be necessary to solve inferential problems. For the GF-quan-
tile distribution in (7), the following properties can be obtained after some algebraic
manipulations:

& The r-th moment of the GF-quantile distribution. From (6), we have that

E Yr½ ( ¼
ð1

0
yr

h
/

1$ yð Þ
h
/$ 1dy ¼ EW 1$ e$/wð Þr

$ %
¼
Yr$ 1

h¼0

1þ h
1þ h=/þ h

¼ 1ð Þ rð Þ

1þ h=/ð Þ rð Þ

(9)

Table 1. GF-quantile probability distributions with different transformed distributions on the
bounded supports.

Type of
Support

Baseline
distribution

Transformed
distribution

Quantile
function

Quantile
density
function pdf on the unit interval

RX ¼ RW W*Gðw; hÞ X* Fðx;/Þ QFðu;/Þ qFðu;/Þ gfðy; h;/Þ
(0, 1) gðw; hÞ U(0, 1) u 1 gðy; hÞ
(a, b) gðw; hÞ U(a, b) ðb$ aÞuþ a (b-a) gððb$ aÞy þ a; hÞðb$ aÞ
ð0;1Þ gðw; hÞ Exp ð1Þ $ ln ð1$ uÞ 1

1$ u gð$ ln ð1$ yÞ; hÞ 1
1$ y

ð$1; 0Þ gð$w; hÞ RefExpð1Þ ln ðuÞ 1
u gð$ ln ðyÞ; hÞ 1y

ð0;1Þ gðw; hÞ Wð1; 1=/Þ ½$ ln ð1$ uÞ(/ /½ $ ln ð1$ uÞ(/$ 1

1$ u gð½$ ln ð1$ yÞ(/; hÞ /½ $ ln ð1$ yÞ(/$ 1

1$ y

ð$1; 0Þ gð$w; hÞ RefWð1;/Þ $ ½$ ln ðuÞ(/ /½ $ ln ðuÞ(/$ 1

u gð½ $ ln ðyÞ(/; hÞ /½ $ ln ðyÞ(/$ 1

y

ð$1;1Þ gðw; hÞ Logistic ln ð u
1$ uÞ 1

uð1$ uÞ gð ln ð y
1$ yÞ; hÞ

1
yð1$ yÞ

any fðx;/Þ fðx;/Þ QFðu;/Þ qðu;/Þ 1

4 J. RODRIGUES ET AL.



3.4.1. The Logistic-Normal distributions

If the logistic quantile function of the transformed standard Logistic distribution
X! Fðx; 0; 1Þ is applied to the baseline Normal distribution with mean l and variance
r2, we obtain the well-known Logistic-Normal distribution (Aitchison and Shen 1980)
which is called as Johnson-SB (Johnson 1949). This probability distribution has been
used in many applications and its properties and generalizations on the simplex can be
seen in Aitchison and Shen (1980). The pdf is given by

gf y; hð Þ ¼
1ffiffiffiffiffiffiffiffiffiffi

2pr2
p

y 1 % yð Þ
e%

log
y

1% yð Þ% lð Þ2
2r2 ; y 2 0; 1ð Þ; h ¼ l;r2

" #
(26)

Figure 6 shows the pdf of the Logistic-Normal quantile distribution for different val-
ues of l and r.

3.4.2. GF real type distributions

The quantile approach can be used to generalize the example discussed before in the
following way: Let X be any random variable with support ð%1;1Þ and the quantile
function given by

QX u;/ð Þ ¼ kþ gS uð Þ; u 2 0; 1½ (;/ ¼ k; gð Þ (27)

where S(u) is called the basic quantile function (Gilchrist 2000). Some examples of this
basic quantile function are shown in Table 1. Let W! gðw; hÞ be the baseline distribu-
tion on the ð%1;1Þ interval. From (2), we have a general GF-quantile distribution
with pdf given by

gf u; h;/ð Þ ¼ gg kþ gS uð Þ; hð Þj
dS uð Þ
du

j; u 2 0; 1ð Þ (28)

We call the probability distribution in (28) as GF real type distribution. It has a gen-
eral representation and not restricted to the baseline normal distributions and the
standard logistic quantile function. The quantile function of the GF-distribution is
given by

Qgf u;/ð Þ ¼ S% 1 wu % k
g

$ %
(29)

where wu ¼ QGðuÞ.

3.4.3. Johnson-SB type distributions

Let G be the baseline distribution of the random variable W with support ð%1;1Þ and
SðuÞ ¼ ln ð u

1% uÞ the standard quantile function of the transformed logistic random variable
X. From (28), the logit-Johnson-SB distribution (denoted by JSBðh;/Þ) is given by

gf y; h;/ð Þ ¼
gg kþ gS yð Þ; h
" #

y 1 % yð Þ
; y 2 0; 1ð Þ;/ ¼ k; gð Þ (30)

10 J. RODRIGUES ET AL.
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gf u; h;/ð Þ ¼ gg kþ gS uð Þ; hð Þj
dS uð Þ
du

j; u 2 0; 1ð Þ (28)

We call the probability distribution in (28) as GF real type distribution. It has a gen-
eral representation and not restricted to the baseline normal distributions and the
standard logistic quantile function. The quantile function of the GF-distribution is
given by

Qgf u;/ð Þ ¼ S% 1 wu % k
g

$ %
(29)

where wu ¼ QGðuÞ.

3.4.3. Johnson-SB type distributions

Let G be the baseline distribution of the random variable W with support ð%1;1Þ and
SðuÞ ¼ ln ð u

1% uÞ the standard quantile function of the transformed logistic random variable
X. From (28), the logit-Johnson-SB distribution (denoted by JSBðh;/Þ) is given by

gf y; h;/ð Þ ¼
gg kþ gS yð Þ; h
" #

y 1 % yð Þ
; y 2 0; 1ð Þ;/ ¼ k; gð Þ (30)
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y
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" #
(26)
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More details in


• Rodrigues, J. ; Bazán, J. L.; Suzuki, A. K. (2020). A flexible procedure for formulating probability 
distributions on the unit interval with applications. Communications in Statistics-Theory and Methods. 
49(3), 738- 754.


(Diferentes procedure to create different variable in the (0,1) interval ).



4
APPLICATION



To illustration we formulate a new regression model based on  
responses in equation (30) and the baseline distribution  with support in the 

. That is we consider a the Standard Logistic distribution as Transformed 
distribution. 


The baseline two-parameter distributions considered were: Gumbel ( ), 
Logistic ( ), Normal ( ) and the Reverse Gumbel ( ). 


The three-parameter continuous distributions considered were: Exponential 
Gaussian ( ), Power Exponential ( ), t family 
( ), Skew Normal (  and ), for 

We use GAMLSS parameterization for this distributions. See


https://www.gamlss.com/distributions/

JSB(θ, (0,1))
G(y, θ)

ℜ

Gu(μ, σ)
Lo(μ, σ) N(μ, σ) RGu(μ, σ)

ExGauss(μ; σ; ν) PE(μ; σ; ν)
TF(μ; σ; ν) SN1(μ; σ; ν) SN2(μ; σ; ν) ν > 0

https://www.gamlss.com/distributions/


support on R in the GAMLSS package of R software and the transformed logistic ran-
dom variable X with the standard quantile function. The baseline two-parameter distri-
butions on R are the following: Gumbel (Gu(l; r)), Logistic (Lo(l; r)), Normal
(N(l; r)) and the Reverse Gumbel (RGu(l; r)). The three-parameter continuous distri-
butions on R are the following: Exponential Gaussian (ExGauss (l;r; !)), Power
Exponential (PE(l; r; !)), t family (TF (l; r; !)), Skew Normal (SN1 (l; r; !) and
SN2(l; r; !)), for !> 0. As before, we consider the D-poverty dataset (Y:proportion of
poverty) and the human development index (HDI) as the covariate Z of 195 provinces
of Peru. Given the paired dataset (Z1, y1), ! ! ! ; ðZ195; y195Þ, we consider the JSBðh; ð0; 1ÞÞ
regression models with h ¼ ðl; rÞ and h ¼ ðl; r; !Þ given by

Yi % JSB h; 0; 1ð Þð Þ; i ¼ 1; :::; 195 (35)

with the following link functions given in Table 4.

llink lið Þ ¼ b0 þ b1Zi; i ¼ 1; 2; :::; 195;

rlink rð Þ ¼ d0;

!link !ð Þ ¼ /0

The likelihood function of ðb0; b1; d0;/0Þ is given by

L b0; b1; d0;/0jDð Þ ¼
Yn

i¼1

gf yi; b0; b1; d0;/0ð Þ

¼
Yn

i¼1

g ln
y

1 ' y

! "
; b0; b1; d0;/0

! " 1
yi 1 ' yið Þ

(36)

Writing (36) in terms of log-likelihood, we have that

l b0;b1; d0;/0jDð Þ ¼
Xn

i¼1

ln g ln
y

1 ' y

! "
; b0; b1; d0;/0

! "! "
'
Xn

i¼1

ln yi 1' yið Þð Þ

(37)

Note that the maximum likelihood estimators are solutions of the nonlinear likeli-
hood equations obtained from (37). Unfortunately, these solutions do not have a closed
form, however, they can be easily obtained in the GAMLSS R-package since the new
distributions and the logit transformation are available in this package. The advantage
of this package is the possibility of using different maximization algorithms, comparison
criteria and standardized quantile residuals. The maximization algorithm used here is

Table 4. Johnson-SB regression model for the poverty dataset.
Models Parameters llink rlink !link Global Deviance: AIC: SBC:

Beta 3 logit logit – '308.48 '302.48 '292.66
Lo 3 identity log – '324.41 '318.41 '308.59
Gu 3 identity log – '348.13 '342.13 '332.31
RGu 3 identity log – '220.59 '214.59 '204.78
ExGauss 4 identity log log '311.55 '303.55 '290.46
PE 4 identity log log '325.24 '317.24 '304.14
SN1 4 identity log log '312.05 '304.05 '290.95
SN2 4 identity log log '341.94 '333.94 '320.85
T 4 identity log log '326.04 '318.04 '304.95
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we consider the D-poverty dataset (Y: proportion of poverty) and the human development index 
(HDI) as the covariate Z of 195 provinces of Peru. 


Given the paired dataset , we consider the   regression 
models with 


 and   given by 


(Z1, y1), …, (Z195, y195) JSB(θ, (0,1))

θ = (μ, σ) θ = (μ, σ, ν)



• Model comparison criteria indicated that the best model is the Gumbel-
Logit regression model 
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Note that the maximum likelihood estimators are solutions of the nonlinear likeli-
hood equations obtained from (37). Unfortunately, these solutions do not have a closed
form, however, they can be easily obtained in the GAMLSS R-package since the new
distributions and the logit transformation are available in this package. The advantage
of this package is the possibility of using different maximization algorithms, comparison
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the RS procedure (default in GAMLSS package). This algorithm does not use the cross
derivatives of the log-likelihood and it is stable and faster. A detailed description of this
procedure can be found in Rigby and Stasinopoulos (2005).
In Table 4, we present three models comparison criteria to evaluate different regres-

sion models proposed for the poverty dataset. In addition, the Beta regression model
was included as a reference to compare with the proposed models. Using the Global
Deviance, AIC and SBC measures, we conclude that the best fitting model for this data-
set is the GU regression model.
In Table 5, we show the estimates of the parameters of the best model, that is, the

Gumbel distribution as the baseline distribution and the logit as the transformed distri-
bution named here as L-Gumbel. For comparison purposes, we also present the corres-
pondent parameters of the Beta regression model. In this scenery, if the HDI is
increasing the poverty is decreasing as expected. The residual analysis in Figure 5 con-
firms that the L-Gumbel distribution is the best fitting model for the poverty dataset.

5. Final comments

In this paper, we introduce a unified procedure to transform the baseline distributions
through quantile functions to fit data restricted to (0, 1) interval. The composite quan-
tile family obtained by this quantile approach includes many well-known alternative

Table 5. l-Gumbel Regression model versus Beta regression model for the poverty dataset.
Model Coefficients Estimate Std. Error t value Prð> jtjÞ
Beta b0 9.84 0.53 18.68 < 2e# 16

b1 #17.08 0.91 #18.77 < 2e# 16
d0 #1.17 0.06 #19.11 < 2e# 16

GU b0 11.69 0.42 27.78 < 2e# 16
b1 #19.88 0.72 #27.45 < 2e# 16
d0 #0.88 0.06 #15.66 < 2e# 16

Figure 5. Plots of the Logistic-Normal quantile distribution for: (a) r ¼ 2:0 and different values of l;
(b) l ¼ 2:0 and different values of r.
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More details in Section 4.2 Regression models: Likelihood approach from


• Rodrigues, J. ; Bazán, J. L.; Suzuki, A. K. (2020). A flexible procedure for formulating probability 
distributions on the unit interval with applications. Communications in Statistics-Theory and Methods. 
49(3), 738- 754.


(Diferentes procedure to create different variable in the (0,1) interval )


• Piccirilli, G. P. ; De Bastiani,  F. ; Bazán, J. L.; (2021). Bounded mixed regression models of Brazil’s 
longitudinal mortality rate from bronchial and lung cancer. International Statistical Review. Submitted.


(Regression model using distributions SB type. Classical estimation).



5
Extensions and 
applications



Political analysis. Votes are proportions!


• da Paz, R. F. ; Ehlers, R. S. ; Bazán, J. L. . A Weibull Mixture Model for the 
Votes of a Brazilian Political Party. Springer Proceedings in Mathematics & 
Statistics. 1 ed. : Springer International Publishing, 2015, v. 118, p. 229-241.


• Bazán, J. L. ; Sulmont, D. ; Calderón, A. B (2014). Las Organizaciones 
políticas en las elecciones presidenciales peruanas de 2011 usando análisis 
de componentes principales.  Revista de Estudos Sociais. UFMT 14(1), 
10-27.


• Da Paz, R., Bazán, J. L.; Lachos, V. H.; Dey. D (2020). A finite Mixture Mixed 
Proportion Regression Model for Classification Problems in Longitudinal 
Voting data. Submitted for publication in Journal of Applied Statistics.



Educational analysis. Response are bounded!


• Flores, S.; Prates, M. O. ; Bazán, J.L ; Bolfarine, H.  (2021). Spatial regression 
models for bounded response variables with evaluation of the degree of 
dependence. Statistics and Its Interface. v. 14, p. 95-107


• De Oliveira, E. S. B.; Wang, X.; Bazán, J. L. (2020). Bayesian Cognitive Diagnosis 
Model for Bounded Responses. Submitted for Statistics and Its Interface.




Psychometric analysis. Times and Response are bounded!


• Nogarotto, D. A.; Azevedo, C. L. N. ; Bazán, J. L.(2020). Bayesian Estimation, 
Residual Analysis and Prior Sensitivity Study for Zero-One Augmented Beta 
Regression Models with an Application to Psychometric Data. Brazilian Journal 
of Probability and Statistics. 34(2), 304-322.


• Flores, S.; Bazán, J. L.; Bolfarine, H. (2020). A Hierarchical Joint Model for Bounded 
Response Time and Response Accuracy. In: Wiberg M., Molenaar D., González J., 
Böckenholt U., Kim JS. (eds) Quantitative Psychology. IMPS 2019. Springer 
Proceedings in Mathematics & Statistics, vol 322. Springer, Cham. 95-109


• Silva, Ana R. S. ; Azevedo, C. L. N. ; Bazán, J. L. ; Nobre, S. J. (2021) 
Augmented-limited regression models with an application to the study of the risk 
perceived using continuous scales. Journal of Applied Statistics, 48:11, 
1998-2021



Psychometric analysis. Times and Response are bounded!

• Silva, Ana R. S. ; Azevedo, C. L. N. ; Bazán, J. L. ; Nobre, S. J. (2021) Bayesian 
inference for zero-and/or-one augmented rectangular beta regression models. 
Accepted. Brazilian Journal of  Probability and Statistics.


• Molenaar, D. ; Curi, M. ; Bazán, J. L. ; Nobre, S. J. (2021) Item Response 
Theory Models for Bounded Continuous Data. Submitted Journal of Educational 
and Behavioral Statistics



Health analysis. Incidences rates are proportions


• Cancho, V. G.; Bazán, J. L. ; Dey, D. K. (2020). A new class of regression 
model for a bounded response with application in the study of the incidence 
rate of colorectal cancer. Statistical Methods in Medical Research. 49(3), 
738- 754.


• Piccirilli, G. P. ; De Bastiani,  F. ; Bazán, J. L.; (2021). Bounded mixed regression 
models of Brazil’s longitudinal mortality rate from bronchial and lung cancer. 
International Statistical Review. Submitted.


(Regression model using distributions SB type. Classical estimation).


Economy, Finances, Business. Index are proportions



6
COMMENTS



• Beyond Beta: The Beta in the “(0,1) world” is as the Normal in the “line 
world.” It is the Queen. But it not cover the most part of the problems in this 
world. We need new distributions as claimed by Kotz and van Dorp (2014).


• However, it is not about of create new distributions, it is about of explain 
new mechanism to explain the randomization in the interval (0,1). Then is it 
open and contribution are welcomed. We need study mathematical and 
probabilistic properties of the new distributions formulated in (0,1).  
(Rodrigues et al, 2020).


• The majority of propose emphasize in a quantile parameterization 
considering a median as a local parameter and additional parameters as 
shape parameters. It  is more convenient than the mean-dispersion 
parameterization of the Beta distribution because in the (0,1) we 
characterize better the distribution using a robust approach.




• We showed different applications which exhibited that the original data are 
bounded. In special in Humanities, Psychology, Education, Social 
sciences, Political Analysis and Health.


• Proportions, index, time and some continuous response are often limited 
and it was ignored in the modeling. The different applications show that it is 
possible modeling this response without transform data.




• We need development new Exploratory Data Analysis and Data 
Visualization techniques for bounded data.


• We need multivariate version of the distributions proposed using different 
correlational structure.


• We require censured, truncated, mixtures and inflated or augmented 
versions of the distributions studied.


• New Bounded-Binomial distributions can be formulated to Count data.


• Model comparison criteria, checking model methods, diagnostic and 
residual analysis must be reexamined for bound response and eventually 
new development bust be proposed.




• We need use this distributions in problems of Times Series, Dynamic and 
sequential problems, Spatial and Temporal data, Pooled data, Survivor 
Analysis and Conjoint Analysis, Funcional data, Latent variables models, 
(Factor Analysis, SEM, Item Response Theory, Cognitive Diagnostic 
models), etc.


• In a Bayesian approach, to models with parameters in the interval (0,1) 
new class of priors can be formulated considering the new distributions 
alternative to the Beta distribution.




• Regression models using Beta and Simplex are implemented in R 
packages using ML estimation.


https://cran.r-project.org/web/packages/betareg/betareg.pdf
https://cran.r-project.org/web/packages/simplexreg/simplexreg.pdf

• Regression models using Beta, L-Logistic and Kumaraswamy regression 
are implemented in R packages using Bayesian estimation.


https://cran.r-project.org/web/packages/llogistic/llogistic.pdf
https://www.r-inla.org

• Beta is a consolidate model and it is available in different commercial 
software as SPSS, Stata and SAS


• Other generic R packages as GAMLSS could implement other distributions 
as showed in the Rodrigues et al (2020)

https://cran.r-project.org/web/packages/betareg/betareg.pdf
https://cran.r-project.org/web/packages/simplexreg/simplexreg.pdf
https://cran.r-project.org/web/packages/llogistic/llogistic.pdf
https://www.r-inla.org


• Any model listed here could be implemented using bayesian approach in 
WinBUGS, OpenBugs, JAGS, Stan and then could be fitted using interface 
with R


• Using PyStan and PyMC3 we can implement any model listed here under 
Bayesian approach in Python.


• We need a General Bounded package following https://cran.r-project.org/
web/packages/quantreg/quantreg.pdf 


• Use combined of Statistical techniques with Data Science and Machine 
Learning using new algorithm will be developed to complex and big data.


https://cran.r-project.org/web/packages/quantreg/quantreg.pdf
https://cran.r-project.org/web/packages/quantreg/quantreg.pdf


17 years later.


New versions?



Let’s go to work.


Thank you for your attention! 


!TODOS ESTÁN INVITADOS A PRODUCIR 
NUEVOS RESULTADOS!


  jlbazan@icmc.usp.br 
https://jorgeluisbazan.weebly.com
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